Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28

Отсюда следует, что на первом этапе должен возникнуть нейрон с ЭД «умножить». Обозначим его через А1 Возникший нейрон максимально сгладит существующие противоречия, но до полной идиллии будет еще далеко. Напряжение ослабнет, но останется. В том случае, если оставшегося напряжения система не в состоянии будет «долго терпеть», то ей придется опять решать ту же самую задачу, задачу по устранению возникшего напряжения, но уже в новых условиях. Целевую функцию (3.1) придется переписать в виде (с учетом нового элемента):

(z - (d1(x,y)+ d2(A1,x)+ d3(A1,y)+ d4(x,d5(A1,y)))2 (3.2)

Здесь d1,d2,d3,d4,d5 принимают значения из множества ЭД.

В нашем случае решение (3.2) приведет к следующим результатам (напоминаем, что операция является более предпочтительной):

d1 – « »

d2 – « »

d3 – «+»

d4 – « »

d5 – « »

Таким образом, итоговая схема формирования системы по принципу самозарождения будет выглядеть:

Рис. 1.5. Итоговая схема формирования системы по принципу самозарождения (часть 1).

Процесс самозарождения повторяется до тех пор, пока система не откажется от рождения новых элементов, считая оставшееся внешнее напряжение вполне терпимым. Кроме того, с каждым разом задача выбора ЭД будет становиться все более и более трудоемкой. С одной стороны, все возрастающая трудоемкость выбора нейрона, а с другой – понижение внешнего напряжения приведут к тому, что система успокоится и будет работать с той погрешностью, на которую окажется способной.

На этом можно считать обучение по принципу самозарождения законченным. Но теперь уже появляется возможность дальнейшего обучения по принципу саморазрушения, который был рассмотрен ранее. Здесь его можно уточнить, введя такой параметр как «жизненная сила» нейрона. Под жизненной силой нейрона будем понимать величину внешнего напряжения для компенсации которого он был рожден. В приведенном примере жизненная сила нейронов А1 и A2 соответствует 15 и 5 соответственно. Будем считать, что нейрон может быть уничтожен только тогда, когда внешнее напряжение, действующее на него, превосходит его собственную жизненную силу. Это значит, что для уничтожения первого нейрона из приведенного примера потребуется напряжение не менее 15, а для второго – не менее 5 условных единиц.

Покажем возможность этого.

Пусть на вход системы, приведенной на рис. 1.5, поданы сигналы со значением 5 и 1, а на выход – 12, т.е. х=5, у=1, z=12. В этой ситуации внешнее напряжение элемента А2 превосходит его жизненную силу, и он гибнет. Процесс гибели распространяется вглубь системы, но останавливается на нейроне А1, жизненная сила которого больше внешней энергии разрушения. Возникает ситуация, благоприятная для рождения нового элемента взамен погибшего.

Минимизация целевой функции (3.2) приведет к рождению нейрона с ЭД «вычитание по модулю», что отражено в итоговой схеме на рис. 1.6.

Рис. 1.6. Итоговая схема формирования системы по принципу самозарождения (часть 2)

В том случае, если внешние условия вернутся к первоначальным (x=3, y=5, z=20), то рожденный элемент опять будет уничтожен.

В приведенном примере силой, ответственной за уничтожение элементов, является значение целевой функции на новой порции обучающих данных. Понятно, что это только один из возможных подходов. Существуют и другие пути. Например, в качестве внешнего напряжения можно использовать функцию от неких средних значений по всей обучающей выборке.

Подобный принцип самообучения достаточно просто реализовать в виде компьютерной программы, размер которой, как и ее знания, будет динамически изменяться в зависимости от успешности адаптации к внешним условиям.

В предложенной схеме самообучения исключается такая ситуация, как паралич системы, и гарантируется на каждом этапе обучения та или иная точность предсказания. Эта точность определяется ранее рожденными нейронами.

Подобный подход не исключает методов, в основе которых лежит изменение весовых коэффициентов для входных связей нейрона, наоборот, изменение весовых коэффициентов является единственным методом настройки системы в том случае, когда рождение или гибель нового нейрона становятся невозможными. Например, в случае примера на рис. 1.6, система не способна давать ответ с той точностью, которую хотелось бы пользователю; возникновение новых нейронов уже невозможно в силу недостаточности внешнего напряжения; входные/выходные данные, достаточные для уничтожения нейрона А2, отсутствуют. Единственный способ повышения точности в этой ситуации – подстройка весовых коэффициентов.

В дальнейшем, системы, функционирующие на базе приведенных принципов самовозрождения и разрушения, для краткости назовем СР-сетями.

В рассмотренном примере в качестве ЭД фигурировали арифметические операции, и именно для удобства работы с ними была подобрана соответствующая функция цели. Однако многообразие существующих задач никак не позволяет свести все существующие процессы самообучения исключительно к набору арифметических ЭД. Поэтому возникает резонный вопрос: «Позволяет ли подобный подход решать задачи, связанные с переработкой графических или символьных образов, и можно ли данный подход использовать для решения обычных, будничных задач, присущих человеку, как объекту, притягивающемуся целью?»

Пусть в качестве входных сообщений выступают строки символов, например, Х = «abc», Y = «def». На выходе должна быть строка вида Zp = «bcda».

В качестве целевой функции определим функцию вида:

F=ån=in=1g(Zp(i)-Z(i)),

где:

n = max (strlen(Zp), strlen(Z));

Zp(i) – i символ желаемого результата;

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28

сайт копирайтеров Евгений